Background: Nagashima-type palmoplantar keratoderma (NPPK), caused by biallelic SERPINB7 loss-of-function variants, lacks effective treatments. Intriguingly, monoallelic exonic variants are observed in some patients with NPPK, suggesting additional genetic variants.
Objective: To characterize a deep intronic SERPINB7 variant's pathogenicity, elucidate its splicing dysregulation, and evaluate antisense oligonucleotide (ASO) therapy.
Methods: A customized next-generation sequencing panel was applied to six Chinese NPPK patients. Pathological changes were analyzed by H&E staining and immunofluorescence. RNA extracted from palmar skin was assessed for splicing alterations. Plasmids were generated to evaluate the expression and function of mutant SERPINB7 protein. Haplotype analysis was conducted to confirm the founder effect. RNA pull-down assays and mass spectrometry were used to identify the key splicing factor. Minigene constructs were developed to characterize the splicing process in vitro. Finally, an ASO was designed to target this variant.
Results: A deep intronic SERPINB7 variant was identified in six NPPK patients, leading to pseudo-exon inclusion and the production of a truncated, dysfunctional SERPINB7 protein. Haplotype analysis confirmed it as a Chinese founder variant. RNA pull-down assays revealed excessive SRSF9 binding to the abnormal transcript. In vitro, the ASO successfully corrected the aberrant splicing.
Conclusion: This study established the pathogenicity of a deep intronic founder variant in SERPINB7 driving NPPK via SRSF9-mediated splicing dysregulation, demonstrating ASO therapeutic potential. Findings provide mechanistic insights and a targeted approach for precision therapy development for NPPK.
Keywords: Nagashima-type palmoplantar keratoderma; SERPINB7; aberrant splicing; antisense oligonucleotide; deep intronic variant; genetic therapy.
Copyright © 2025 Japanese Society for Investigative Dermatology. Published by Elsevier B.V. All rights reserved.