Understanding crop plants responses to abiotic stress is increasingly important in this changing climate. We asked experts how discoveries in Arabidopsis thaliana have translated into advancements in abiotic crop stress resilience. The theme is that core regulatory networks identified in Arabidopsis are conserved in crops, but the molecular regulation varies among species. For cold tolerance, the regulatory framework is conserved, but MAP Kinase signaling promotes degradation of the INDUCER OF DREB1 EXPRESSION (ICE) transcription factor in Arabidopsis but inhibits it in rice. For hypoxia, manipulation of the oxygen sensing Arg/N-degron pathway discovered in Arabidopsis has improved waterlogging and flood tolerance in barley, maize, wheat, and soybean. For light signaling, overexpression of PHYTOCHROME B reduces shade avoidance, improving yield under dense planting in potato, soybean, and maize. In rice, understanding of nitrogen responsiveness, uptake, and transport in Arabidopsis has inspired engineering of the NRT1 nitrate transceptor to increase yield. Overexpressing Arabidopsis genes in crops confers drought tolerance, although none have been commercialized. Growing plants in space generates a complex array of stresses, and Arabidopsis experiments in the space station prepare for future development of robust crops as integral components of the life support systems. For environmental regulation of flowering time, the role of the GIGANTEA (GI) - CONTANS (CO) - FLOWERING LOCUS T (FT) module elucidated in Arabidopsis is largely conserved in crop plants, although additional regulators modify short day responsiveness in rice, soybean, chrysanthemum, and potato.
© The Author(s) 2025. Published by Oxford University Press on behalf of American Society of Plant Biologists.