Profiling antigen-binding affinity of B cell repertoires in tumors by deep learning predicts immune-checkpoint inhibitor treatment outcomes

Nat Cancer. 2025 Jun 27. doi: 10.1038/s43018-025-01001-5. Online ahead of print.

Abstract

The capability to profile the landscape of antigen-binding affinities of a vast number of antibodies (B cell receptors, BCRs) will provide a powerful tool to reveal biological insights. However, experimental approaches for detecting antibody-antigen interactions are costly and time-consuming and can only achieve low-to-mid throughput. In this work, we developed Cmai (contrastive modeling for antigen-antibody interactions) to address the prediction of binding between antibodies and antigens that can be scaled to high-throughput sequencing data. We devised a biomarker based on the output from Cmai to map the antigen-binding affinities of BCR repertoires. We found that the abundance of tumor antigen-targeting antibodies is predictive of immune-checkpoint inhibitor (ICI) treatment response. We also found that, during immune-related adverse events (irAEs) caused by ICI, humoral immunity is preferentially responsive to intracellular antigens from the organs affected by the irAEs. We used Cmai to construct a BCR-based irAE risk score, which predicted the timing of the occurrence of irAEs.