Superlubricity holds transformative potential for alleviating the global energy and environmental crisis. While liquid superlubricity has made considerable advancements over the past 30 years, a significant gap remains in realizing industrial applications. This review examines the most recent developments in liquid superlubricity, emphasizing the various liquid superlubricity systems and their mechanisms for achieving superlubricity. The breakthroughs of liquid superlubricity are explicated according to the different types of lubricants; particularly, the discussion on oil-based lubricants is underscored concerning their varying molecular structures. A comprehensive review of mechanisms is presented with the integration of novel findings from recent years, including molecular dependence superlubricity, graphene-like superlubricity, and solid-like superlubricity. The constructive ideas to overcome the limitations of liquid superlubricity are proposed, aimed at promoting the development of liquid superlubricity beyond the laboratory and further contributing to the prosperity of green tribology.
Keywords: Aromatic passivation; Liquid superlubricity; Solid-like superlubricity; Triboreaction; Ultralow friction.
Copyright © 2024. Published by Elsevier B.V.