Overcoming Multidrug Resistance in E. coli and Salmonella Isolates from Nile Tilapia: Synergistic Effects of Novel Antibiotic Combinations

Mol Biotechnol. 2025 Jun 29. doi: 10.1007/s12033-025-01462-0. Online ahead of print.

Abstract

Escherichia coli and Salmonella are significant foodborne zoonotic pathogens, causing serious human illness. The rising global prevalence of antimicrobial resistance (AMR) in these species exacerbates their public health risk, complicating the treatment of bacterial infection. This study investigates its prevalence, resistant genes, and treatment strategy against antibiotic-resistant bacteria, focusing on E. coli and Salmonella isolates from Nile tilapia. Prevalence of E. coli and Salmonella was found to be 32 and 22% respectively. Antibiotic susceptibility testing revealed resistance to five antibiotics in E. coli and four in Salmonella. Physiochemical properties of antibiotic resistance genes (ABRGs) indicated that the TetB gene has the highest aliphatic index in both bacteria, suggesting greater stability. All Bla proteins were hydrophobic as indicated by negative GRAVY values, which may contribute to antibiotic efflux or modification of antibiotic targets. Motif analysis identified functional domains, and cellular localization prediction showed that TetA and TetB genes are primarily expressed in the cell membrane. To combat this resistance, a checkerboard method was used to explore novel antibiotic combinations. For E. coli, one synergistic and two additive combinations were identified, while for Salmonella, two synergistic and one additive combination were effective. These results highlight the importance of regularly evaluating antibiotic combinations to combat resistance and preserve antibiotic efficacy.

Keywords: E. coli; Salmonella; Additive effect; Antibiotic resistance; Checkerboard method; Minimal inhibitory concentration; Synergism.