Advancements and prospects of near-infrared-light driven CO2 reduction reaction

Chem Soc Rev. 2025 Jun 30. doi: 10.1039/d4cs00721b. Online ahead of print.

Abstract

In the realm of photoconversion of CO2 into high-value chemicals, the importance of near-infrared (NIR) light is gradually gaining recognition. Relative to ultraviolet (UV) and visible light, NIR light (700-2500 nm), accounting for ca. 50% of solar energy, offers unique advantages such as deeper penetration depth and stronger photothermal effects. Thus, utilizing NIR light can not only compensate for the inherent limitations of UV/visible light-based CO2 reduction systems, but also maximize the use of solar energy. However, efficiently harnessing NIR light remains challenging because of its low photon energy, making it difficult to drive CO2 reduction. Additionally, the limited knowledge of the reduction mechanism driven by low-energy photons further hinders progress in this field. In this review, we systematically introduce the motivation and fundamental principles of NIR-light-driven CO2 reduction, the design strategies for NIR-light-activated photocatalysts (including the energy band structure regulation strategy, the energy transfer strategy, and the photothermal utilization strategy), NIR-light absorption mechanisms of these catalysts, and representative applications of these strategies. Finally, we present our perspectives on the challenges facing NIR-light-driven CO2 reduction and provide suggestions for improving current photocatalysts, characterization techniques, evaluation procedures, and potential large-scale applications in future research. With further advancements in NIR-light-driven CO2 reduction, it holds great promise to maximize the exploitation of solar energy, ultimately achieving efficient CO2 photoconversion for industrial applications.

Publication types

  • Review