Pediatric low-grade gliomas (pLGG) comprise 35% of all brain tumors. Despite favorable survival, patients experience significant morbidity from disease and treatments. A deeper understanding of pLGG biology is essential to identify novel, more effective, and less toxic therapies. We utilized single-cell RNA sequencing (scRNA-seq), spatial transcriptomics, and cytokine analyses to characterize and understand tumor and immune cell heterogeneity of pilocytic astrocytoma (PA) and ganglioglioma (GG). scRNA-seq revealed tumor and immune cells within the tumor microenvironment (TME). Tumor cell subsets include both progenitor and mature cell populations. Immune cells included myeloid and lymphocytic cells. There was a significant difference between the prevalence of two major myeloid subclusters between PA and GG. Bulk and single-cell cytokine analyses evaluated the immune cell signaling cascade with distinct immune phenotypes among tumor samples. KIAA1549-BRAF tumors appeared more immunogenic, secreting higher levels of immune cell activators and chemokines, compared to BRAF V600E tumors. Spatial transcriptomics revealed the differential gene expression of these chemokines and their location within the TME. A multi-pronged analysis demonstrated the complexity of the PA and GG TME and differences between genetic drivers that may influence their response to immunotherapy. Further investigation of immune cell infiltration and tumor-immune interactions is warranted.
Keywords: Pilocytic astrocytoma; chemokine; ganglioglioma; scRNA‐sequencing; spatial transcriptomics.
© 2025 The Author(s). Brain Pathology published by John Wiley & Sons Ltd on behalf of International Society of Neuropathology.