Tauopathies encompass a range of neurodegenerative disorders, such as Alzheimer's disease (AD) and frontotemporal lobar degeneration with tau inclusions (FTLD-tau), for which there are currently no successful treatments. Here, we show impaired glycogen metabolism in the brain of a tauopathy Drosophila melanogaster model and people with AD, indicating a link between tauopathies and glycogen metabolism. We demonstrate that the breakdown of neuronal glycogen ameliorates the tauopathy phenotypes in flies and induced pluripotent stem cell (iPSC)-derived neurons from people with FTLD-tau. Glycogen breakdown redirects glucose flux to the pentose phosphate pathway and alleviates oxidative stress. Our findings uncover a critical role for the neuroprotective effects of dietary restriction (DR) by increasing glycogen breakdown. Mechanistically, we show a potential interaction between tau protein and glycogen, suggesting a vicious cycle in which tau binding promotes glycogen accumulation in neurons, which in turn exacerbates tau accumulation which further disrupts cellular homeostasis. Our studies identify impaired glycogen metabolism as a key hallmark for tauopathies and offer a promising therapeutic target in tauopathy and other neurodegenerative diseases.
© 2025. The Author(s), under exclusive licence to Springer Nature Limited.