Nuclear quantum effects (NQEs) influence many physical and chemical phenomena, particularly those involving light atoms or occurring at low temperatures. However, their impact has been carefully quantified in few systems-like water-and is rarely considered more broadly. Here we use path-integral molecular dynamics to systematically investigate NQEs on thermophysical properties of 92 organic liquids at ambient conditions. Depending on chemical constitution, we find substantial impact across thermal expansivity, compressibility, dielectric constant, enthalpy of vaporization, and notably molar volume, which shows consistent, positive quantum-classical differences up to 5%; similar, less pronounced trends manifest as isotope effects from deuteration. Using data-driven analysis, we identify three features-molar mass, classical hydrogen density, and classical thermal expansivity-that accurately predict NQEs and facilitate understanding of how characteristics like branching and heteroatom content influence behavior. This work highlights the broad relevance of NQEs in molecular liquids, while also providing a conceptual and practical framework to anticipate their impact.
© 2025. The Author(s).