The simultaneous transfer of chirality and energy is essential in biological systems, serving as a key inspiration for developing artificial analogs. Traditional methods, such as doping donor-acceptor chromophores into chiral gels or films, exhibit low chirality transfer efficiency due to inadequate stereo-communication. Here we present a bio-inspired strategy modeled on the chlorosomes of green bacteria. Specifically, platinated donor-acceptor chromophores form helical stacks, resembling the organization of bacteriochlorophylls in chlorosomes. Surfactant creates a confined hydrophobic environment, analogous to the role of glycolipids and phospholipids in chlorosomes, shielding the chromophores from water. This design enables energy and chirality transfer, as evidenced by femtosecond time-resolved circularly polarized luminescence spectroscopy. Further investigations reveal that amide units on the chromophores and stereochemical compatibility between donors and acceptors are critical for the dual information transfer. This study highlights the importance of a chlorosome-mimetic design in achieving simultaneous energy and chirality transfer in artificial systems.
© 2025. The Author(s).