Mutations in mitochondrial DNA (mtDNA) accumulate during aging and contribute to age-related conditions. High mtDNA copy number masks newly emerged recessive mutations; however, phenotypes develop when cellular levels of a mutant mtDNA rise above a critical threshold. The process driving this increase is unknown. Single-cell DNA sequencing of mouse and human hepatocytes detected increases in abundance of mutant alleles in sequences governing mtDNA replication. These alleles provided a replication advantage (drive) leading to accumulation of the affected genome along with a wide variety of associated passenger mutations, some of which are detrimental. The most prevalent human mtDNA disease variant, the 3243A>G allele, behaved as a driver, suggesting that drive underlies prevalence. We conclude that replicative drive amplifies linked mtDNA mutations to a threshold at which phenotypes are seen thereby promoting age-associated erosion of the mtDNA and influencing the transmission and progression of mitochondrial diseases.
© 2025. The Author(s).