Background: Detecting liver tumors via computed tomography (CT) scans is a critical but labor-intensive task. Extensive expert annotations are needed to train effective machine learning models. This study presents an innovative approach that leverages federated learning in combination with a teacher‒student framework, an enhanced slice-aware network (SANet), and semisupervised learning (SSL) techniques to improve the CT-based liver tumor detection process while significantly reducing its labor and time costs.
Methods: Federated learning enables collaborative model training to be performed across multiple institutions without sharing sensitive patient data, thus ensuring privacy and security. The teacher-student SANet framework takes advantage of both teacher and student models, with the teacher model providing reliable pseudolabels that guide the student model in a semisupervised manner. This method not only improves the accuracy of liver tumor detection but also reduces the dependence on extensively annotated datasets.
Results: The proposed method was validated through simulation experiments conducted in four scenarios, and it demonstrated a model accuracy of 83%, which represents an improvement over the original locally trained models.
Conclusions: This study presents a promising method for enhancing the CT-based liver tumor detection while reducing the incurred labor and time costs by utilizing federated learning, the teacher-student SANet framework, and SSL techniques. Compared with previous approaches, the proposed method achieved a model accuracy of 83%, representing a significant improvement.
Trial registration: Not applicable.
Keywords: Federated learning; Liver tumors; Medical image analysis; Semisupervised learning; Teacher–student framework.
© 2025. The Author(s).