Screening of Bioactive Fractions from Balanites aegyptiaca and Pterocarpus Marsupium for Anticancer Effects in HepG2 and U87MG Cels

Anticancer Agents Med Chem. 2025 Jun 23. doi: 10.2174/0118715206396025250614030603. Online ahead of print.

Abstract

Introduction: Cancer is a group of diseases caused by uncontrollable cell growth. Herbal medicines, derived from plants, have been used for centuries across cultures for their therapeutic benefits, effectively treating conditions like cancer. This study represents the anticancer effects of fractions of some medicinal plant extracts along with their apoptotic studies and their induction through p53-mediated Bax and Bcl-2 mRNA expression in HepG2 and U87MG cells.

Methods: The fractionation of crude methanolic extracts was done using Column Chromatography and Thin Layer Chromatography. The fractions were analysed for cytotoxicity against both the cell lines by MTT assay. Cancer cells were treated with 2 most active fractions and their mechanism of apoptosis induction was assessed by Flow Cytometry studies and the mRNA expression levels of p53, Bax, and Bcl-2 were determined by Reverse Transcriptase PCR. The presence of phytoconstituents in the active fractions was analysed by GC-MS.

Results: The active fractions revealed the apoptosis induction in both the cell lines and the RT-PCR studies suggested the mechanism of apoptosis induction through upregulation of p53 and Bax and downregulation of Bcl-2 mRNA. The GC-MS analysis of active fractions from Balanites aegyptiaca and Pterocarpus marsupium revealed the presence of phytochemicals such as 4-O-Methylmannose, Oleic acid, Erucic acid, etc. which might have contributed to the anti-proliferative and apoptotic effects of these fractions.

Discussion: 4-O-Methylmannose was the major component identified with the highest peak area of 59%. The fractions from all the 4 plant extracts demonstrated significant cytotoxic effects on the liver (HepG2) and brain (U87MG) cancer cell lines, with particular emphasis on the active fractions BA FII, PM FII, and PM FIII. Additionally, the mechanisms of apoptosis induction through the modulation of p53, Bax, and Bcl-2 pathways, along with the presence of bioactive compounds further support the anticancer efficacy of these plant extracts. Also, to the best of our knowledge, this is the first study on fractions of Balanites aegyptiaca and Pterocarpus marsupium against U87MG cells.

Conclusion: The results highlight the promising potential of plant-derived natural products as anticancer agents. These findings provide valuable insight into the potential of herbal medicines and encourage further exploration of plant-based therapies for cancer treatment.

Keywords: Anticancer; apoptosis; cancer; cell lines; phytochemicals.; plant extracts.