Diabetic peripheral neuropathy (DPN), a prevalent complication of diabetes, caused a significant morbidity and posed a heavy burden on society. Considering the lack of disease models in vitro for DPN and the advantages of 3D bioprinting in disease modeling, we employed 3D bioprinting technology based on GelMA hydrogel to construct neurovascular units to mimic peripheral nerves and vessels in vitro, further we built the pathological microenvironment characteristic of DPN when the treatment of high glucose in these units. Our 3D disease models closely recapitulated in vivo pathological conditions, including oxidative stress and inflammatory responses, which are key hallmarks of DPN. Then we explored the effects of cholesterol on DPN progression using our disease models in vitro. Moreover, the results of RNA-seq analysis revealed that cholesterol stimulation promoted neuron death and inhibited angiogenesis, thereby accelerating the progression of DPN. We identified Fos as a potential therapeutic target, given its role in regulating reactive oxygen species (ROS), neuron death, and transcriptional activity. This study provides valuable insights into the molecular mechanisms underlying the interaction between cholesterol and DPN, and highlights the potential for targeting cholesterol metabolism in the treatment of DPN.
Keywords: 3D bioprinting; DPN; GelMA; Hydrogel; neurovascular unit.