Background: The infant gut microbiome is essential for healthy growth and development. However, limited research has explored how interventions targeting maternal and infant health, nutrition, and psychosocial conditions during preconception, pregnancy, and early childhood impact microbiome development. To address this research gap and better understand the potential impact of such interventions, this study was designed to evaluate their effects on the infant gut microbiome.
Objective: The aim was to evaluate the effects of an integrated intervention package on infant gut microbiome at 6 mo of age compared with routine care.
Methods: The study was embedded in a randomized factorial trial involving women aged 18-30 y. Participants were randomly assigned to receive either a preconception intervention package or routine care until pregnancy. Pregnant women were then randomly assigned to receive a pregnancy and early childhood intervention package or routine care. The intervention included health care for growth-related conditions, nutrition, water, sanitation, and hygiene (WASH), and psychosocial care. Stool samples from 392 infants (185 from the preconception, pregnancy, and early childhood intervention group and 207 from the routine care group) were collected at 6 mo, followed by microbiome DNA isolation and high-throughput sequencing of the V3-V4 region of 16S rRNA gene. Generalized linear models were used to estimate the mean relative abundance of core gut microbiome phyla, genera, and species between the intervention and routine care groups.
Results: Infants in the group who received preconception, pregnancy, and early childhood intervention had a significantly lower mean relative abundance of Klebsiella genus under the Pseudomonadota phylum (45% lower; 95% confidence interval [CI]: 18, 63) and Klebsiella pneumoniae species (38% lower; 95% CI: 8, 59) compared with routine care group. In contrast, the relative abundance of Megasphaera (72% higher; 95% CI: 7, 175), Prevotella (72% higher; 95% CI: 3, 187), and Bifidobacterium breve (34% higher; 95% CI: 2, 79) was significantly higher in the group received preconception, pregnancy and early childhood intervention compared with routine care.
Conclusions: The findings indicate that improving maternal and infant health, nutrition, and psychosocial conditions enhances the relative abundance of beneficial gut bacteria at 6 mo of age, supporting healthy growth and development. This trial was registered at Clinical Trials Registry-India as CTRI/2020/10/028770; https://ctri.nic.in/Clinicaltrials/advsearch2.php.
Keywords: 16S rRNA; Bifidobacterium; WINGS; infant gut microbiome; integrated interventions.
Copyright © 2025 The Author(s). Published by Elsevier Inc. All rights reserved.