Vertical graphene nanosheets (VGSs) are a kind of graphene materials, which retain the inherent advantages of graphene and effectively overcome the stacking bottleneck displayed by traditional graphene. The scalable production of VGSs may help the development of devices such as field-effect transistors, sensors, biomedical materials, electrochemical energy storage, thermal conductive materials and catalyst supports. The thermal chemical vapor deposition (CVD) approach has become a mature, efficient and highly valuable industrial strategy for VGSs fabrication. This technique imposes no restrictions on the morphology and size of the substrate and has high yield and low equipment cost, making it suitable for scalable industrial applications. Here we detail the step-by-step instructions for growing VGSs on a variety of common substrates such as carbon nanofibers, carbon fibers and Si particles using the thermal CVD approach. The scalability of thermal CVD could help advance the development of industrial applications of VGSs composite materials. The procedure requires a total of 136 h and 45 min to successfully produce VGSs on C and Si substrates, followed by a comprehensive characterization of the nanosheets. The procedure is suitable for users with expertise in chemistry or materials science.
© 2025. Springer Nature Limited.