Background: Recently, the importance and innovative applications of extracellular vesicles in bone and dental pulp tissue engineering have attracted more attention. Moreover, the use of extracellular vesicles derived from various cell types, such as mesenchymal stem cells, has been extensively examined. However, the understanding of the intricate mechanisms, diverse applications, and potential uses of extracellular vesicles originating from Schwann cells in neurogenesis, angiogenesis, neurovascularized osteogenesis, and dental pulp regeneration remains largely unexplored and under-investigated. This is the first review to provide a comprehensive overview of the cutting-edge researches on Schwann cell-derived extracellular vesicles (SCs-EVs) in the context of tissue regeneration. It emphasizes the emerging understanding of key bioactive molecules in SCs-EVs, including RNAs and proteins, and their role in promoting tissue regeneration. Furthermore, this review describes for the first time how bioactive molecules achieve neurogenic, angiogenic, osteogenic and odontogenic efficacy by activating related mechanistic pathways. In addition to these insights, the review also generalizes the potential clinical applications of SCs-EVs, both in the present and looking forward to future advancements in the field.
Conclusions: SCs-EVs exhibit an impressive and effective capability for the delivery of RNAs and proteins, which play a crucial role in activating multiple biological mechanisms. Their remarkable combination with a diverse array of materials has demonstrated significant potential for facilitating tissue repair and regeneration across various biological systems. This review meticulously summarizes the various types of RNAs, proteins, and the related mechanisms that contribute to essential processes such as neurogenesis, angiogenesis, osteogenesis, and odontogenesis, highlighting their importance in regenerative medicine. Furthermore, we delve into the forefront of research and the potential applications of SCs-EVs specifically in the context of bone and dental tissue regeneration. The recent advancements in the development of SCs-EVs, alongside innovative biomaterial scaffolds, present a promising and transformative approach to enhancing therapeutic effectiveness in the regeneration of nerve, vascular, bone, and dental tissues, paving the way for future breakthroughs in regenerative therapies.
Keywords: Exosomes; Extracellular vesicles; Schwann cells; Tissue engineering.
© 2025. The Author(s).