Mobile Tunnel Lining Measurable Image Scanning Assisted by Collimated Lasers

Sensors (Basel). 2025 Jul 4;25(13):4177. doi: 10.3390/s25134177.

Abstract

The health of road tunnel linings directly impacts traffic safety and requires regular inspection. Appearance defects on tunnel linings can be measured through images scanned by cameras mounted on a car to avoid disrupting traffic. Existing tunnel lining mobile scanning methods often fail in image stitching due to the lack of corresponding feature points in the lining images, or require complex, time-consuming algorithms to eliminate stitching seams caused by the same issue. This paper proposes a mobile scanning method aided by collimated lasers, which uses lasers as corresponding points to assist with image stitching to address the problems. Additionally, the lasers serve as structured light, enabling the measurement of image projection relationships. An inspection car was developed based on this method for the experiment. To ensure operational flexibility, a single checkerboard was used to calibrate the system, including estimating the poses of lasers and cameras, and a Laplace kernel-based algorithm was developed to guarantee the calibration accuracy. Experiments show that the performance of this algorithm exceeds that of other benchmark algorithms, and the proposed method produces nearly seamless, measurable tunnel lining images, demonstrating its feasibility.

Keywords: calibration; dual-quaternion; laser; measurement; road tunnel lining.