Synthesis, Characterization, and Properties of Novel Coplanar Bicyclic Compounds Based on Triazolofurazane Compounds

Molecules. 2025 Jun 29;30(13):2803. doi: 10.3390/molecules30132803.

Abstract

In this study, a C-C bond-linked triazole-fused oxadiazole energetic compound, 4-amino-5-(4-amino-1,2,5-oxadiazol-3-yl)-2,4-dihydro-3H-1,2,4-triazol-3-one (1), was successfully designed and efficiently synthesized. Following nitration, a functional group-modified nitramine energetic compound (2) was obtained, and its energetic ionic salt (3) was further prepared. A comprehensive characterization of the structures of these three compounds was conducted, resulting in the successful elucidation of the single-crystal structures of compound 2·Ca2+·6H2O and compound 3·MeOH. Compound 2 exhibited a positive formation enthalpy (56.2 kJ·mol-1) and moderate mechanical sensitivity (FS = 120 N, IS = 12 J). Due to the presence of the nitramine group, compound 2 exhibited a relatively low thermal decomposition temperature (Tdec = 94 °C). However, the thermal stability of compound 3 was significantly improved (Tdec = 233 °C), which is attributed to salt formation. Compound 3 exhibits a positive formation enthalpy (121.0 kJ·mol-1), along with excellent detonation performance (D = 8120 m·s-1, P = 32.1 GPa) and reduced mechanical sensitivity (FS = 224 N, IS = 24 J). Therefore, the multi-heterocyclic compound, joined via C-C bond linkage, demonstrates outstanding performance, offering a new avenue for the design and synthesis of energetic materials.

Keywords: crystal structures; energetic materials; energetic salts; thermal analysis; triazole.