Improvements in Wettability and Tribological Behavior of Zirconia Artificial Teeth Using Surface Micro-Textures

Materials (Basel). 2025 Jul 1;18(13):3117. doi: 10.3390/ma18133117.

Abstract

Zirconia ceramics are promising materials for restoration and are widely used in the field of artificial teeth. However, wear resistance affects the longevity of artificial teeth. In this study, peacock tail feather micro-textures and groove micro-textures are prepared on the surfaces of zirconia ceramics via the laser ablation technique to improve their tribological properties. The effects of micro-textures on the surface wettability and tribological properties of zirconia ceramics are studied. The micro-textures improve the surface wettability and tribological properties of zirconia ceramics. The average coefficient of friction of peacock tail feather micro-textured samples decreases by 53% compared to that of the samples without micro-textures. Different operating conditions affect the friction properties of zirconia ceramics. The samples have the best friction performance when the rotational speed, load, and acid/alkaline environment are 200 r/min, 15 N, and weakly alkaline, respectively. Furthermore, the mechanism by which surface micro-textures reduce frictional wear is as follows: the textured grooves store debris, and the bottom edge of the textured groove acts as a cutting tool to cut debris, preventing debris from scratching the surface. The micro-textures store lubricant and form a liquid film on the ceramic surface to reduce wear.

Keywords: artificial teeth; surface micro-textures; surface wettability; tribological behavior.