Non-motor symptoms such as cognitive deficits are often observed in Parkinson's disease, and the effect of L-3,4-dihydroxyphenylalanin (L-DOPA) treatment on working memory in rats with unilateral 6-hydroxydopamine lesions of the substantia nigra compacta (SNc) and underlying mechanisms are unclear. In adult male Sprague-Dawley rats, we found that L-DOPA treatment in SNc-lesioned rats reversed working memory impairment, decreased the firing rate of the lateral habenula (LHb) neurons, increased dopamine (DA) levels in the medial prefrontal cortex (mPFC) and hippocampus, and reversed reduced expression of M-channel Kv7.2 subunit in the LHb compared with SNc-lesioned rats treated with normal saline (NS). Intra-LHb injection of M-channel activator retigabine or blocker XE-991 induced enhancement or impairment of working memory in SNc-lesioned rats treated with L-DOPA, along with alterations of DA levels in the mPFC and hippocampus. However, the same doses of the two drugs produced no significant effects on working memory and DA levels in SNc-lesioned rats treated with NS. Further, M-channel activate or blockade decreased or increased the firing rate of LHb neurons, and the duration of M-channel stimulation on the firing rate of the neurons in SNc-lesioned rats treated L-DOPA was longer than those in SNc-lesioned rats treated with NS, which was consistent with up-regulation of Kv7.2 subunit in the LHb. Collectively, these findings suggest that L-DOPA treatment up-regulates the expression of M-channel Kv7.2 subunit in the LHb, and then induces decreased activity of LHb neurons and increased DA levels in the mPFC and hippocampus, which reverse working memory impairment in parkinsonian rats.
Keywords: Kv7.2 subunit-containing M-channels; L-DOPA; Lateral habenula; Parkinson's disease; Working memory.
Copyright © 2025. Published by Elsevier Inc.