A deletion in the alpha subunit locks platelet integrin alpha IIb beta 3 into a high affinity state

Blood Coagul Fibrinolysis. 1996 Mar;7(2):233-6. doi: 10.1097/00001721-199603000-00031.

Abstract

The integrin alpha IIb beta 3 (GPIIb/IIIa) mediates platelet aggregation by a change in affinity for the ligand fibrinogen. The amino acids 991-995 (GFFKR) at the NH2-terminus of the cytoplasmic domain are highly conserved in all known integrin alpha subunits. We postulated that the GFFKR-region is important for the inside-out signal transduction and has an influence on the affinity state of integrins. To test this hypothesis, a mutant with a deletion in the GFFKR region was designed. The DNA-constructs were constructed by PCR, sequenced, cotransfected with the beta 3 subunit into CHO cells and cell surface expression was proven with immunoprecipitation and flow cytometry. The GFFKR-deletion mutant demonstrated a high affinity binding of the mAb PAC-1 and I125-labeled fibrinogen. The metabolic inhibitors 2-deoxyglucose and NaN3 did not change the affinity state of the deleted receptor. Neither did the truncation of the cytoplasmic domain of the beta 3 subunit. Additionally, expression of the deleted integrin in the erythropoetic cell line K562 revealed a high affinity state. A deletion of the GFFKR-region in the cytoplasmic domain of the alpha subunit locks integrin alpha IIb beta 3 in a high affinity state. This is an intrinsic property of the deleted receptor since there is no energy dependence and no cell type specifity. Thus, the GFFKR-region is involved in inside-out signaling in alpha IIb beta 3. Furthermore, cell lines expressing this activated alpha IIb beta 3 integrin may be used as models for activated platelets.

Publication types

  • Research Support, Non-U.S. Gov't

MeSH terms

  • Amino Acid Sequence
  • Animals
  • Base Sequence
  • Cell Line
  • Cricetinae
  • Cricetulus
  • DNA, Complementary / metabolism
  • Female
  • Humans
  • Molecular Sequence Data
  • Platelet Glycoprotein GPIIb-IIIa Complex / chemistry*
  • Platelet Glycoprotein GPIIb-IIIa Complex / genetics
  • Point Mutation
  • Protein Conformation
  • Transfection

Substances

  • DNA, Complementary
  • Platelet Glycoprotein GPIIb-IIIa Complex