Expression of the AMPA-selective receptor subunits in the vestibular nuclei of the chinchilla

Brain Res Mol Brain Res. 1997 Feb;44(1):21-30. doi: 10.1016/s0169-328x(96)00210-0.

Abstract

The distribution of the AMPA type glutamate receptor has been investigated throughout the central nervous system; however, no detailed description of its distribution is available in the vestibular nuclei. In the present study, in situ hybridization histochemistry and immunohistochemistry were used to localize the messenger RNAs and proteins of the AMPA-selective receptor subunits GluR1, GluR2, GluR3 and GluR4 in the vestibular nuclei of the chinchilla. Immunohistochemistry with subunits specific antisera showed differential distribution of the subunits in the vestibular nuclei. GluR2/3 antiserum labeled the most neurons, suggesting that many if not all vestibular neurons receive glutamatergic input. GluR1-positive neurons were fewer than GluR2/3 immunoreactive neurons and GluR4 immunoreactivity was found in the fewest number of neurons. GluR1 and GluR4 immunoreactivity was also found in astrocyte-like structures. In situ hybridization with 35S-labeled complementary RNA probes confirmed the distribution of the AMPA receptor subunits obtained by immunohistochemistry. Quantitative analysis of the levels of hybridization showed a high degree of diversity in the levels of expression of the GluR2 subunit mRNA, with the highest levels of expression in the giant Deiter's cells of the lateral vestibular nuclei and the lowest levels in the small neurons throughout the vestibular nuclei. The subunit compositions of the AMPA receptors determine their physiological properties. Differential distribution and levels of expression of the receptor subunits in the vestibular nuclei may be related to the characteristics of information processing through the vestibular system.

Publication types

  • Research Support, Non-U.S. Gov't
  • Research Support, U.S. Gov't, P.H.S.

MeSH terms

  • Animals
  • Chinchilla
  • Immunohistochemistry
  • In Situ Hybridization
  • Receptors, AMPA / metabolism*
  • Vestibular Nuclei / metabolism*

Substances

  • Receptors, AMPA