Insulin-like growth factors regulate neuronal differentiation and survival

Neurobiol Dis. 1997;4(3-4):201-14. doi: 10.1006/nbdi.1997.0156.

Abstract

Insulin-like growth factor I (IGF-I) and IGF-II are potent trophic factors for motor and sensory neurons and glial cells. The actions of IGF-I and IGF-II are mediated via the IGF-I receptor (IGF-IR). IGF:IGF-IR binding activates distinct signaling cascades, which in turn mediate the trophic effects of the IGFs. We discuss three main IGF coupled events: growth cone motility, long-term neurite outgrowth, and neuroprotection. Our data suggest that IGF-I enhances growth cone motility by promoting reorganization of actin and activation of focal adhesion proteins via the phosphatidylinositol-3 kinase (Pl-3K) pathway. Long-term treatment with IGF-I activates the mitogen-activated protein (MAP) kinase cascade and promotes neurite outgrowth. A separable, but likely linked, action of the IGFs via Pl-3K is protection of neurons from apoptosis. These pleotrophic effects of IGFs suggest that this family of growth factors may have potential clinical utility in the treatment of neurological disorders.

Publication types

  • Research Support, Non-U.S. Gov't
  • Research Support, U.S. Gov't, P.H.S.
  • Review

MeSH terms

  • Animals
  • Cell Differentiation / physiology
  • Cell Survival / physiology
  • Humans
  • Neurons / cytology*
  • Neurons / physiology*
  • Somatomedins / physiology*

Substances

  • Somatomedins