Dimethyl sulfoxide at 2.5% (v/v) alters the structural cooperativity and unfolding mechanism of dimeric bacterial NAD+ synthetase

Protein Sci. 2004 Mar;13(3):830-41. doi: 10.1110/ps.03330104.

Abstract

Dimethyl sulfoxide (DMSO) is commonly used as a cosolvent to improve the aqueous solubility of small organic compounds. Its use in a screen to identify novel inhibitors of the enzyme NAD(+) synthetase led to this investigation of its potential effects on the structure and stability of this 60-kD homodimeric enzyme. Although no effects are observed on the enzyme's catalytic activity, as low as 2.5% (v/v) DMSO led to demonstrable changes in the stability of the dimer and its unfolding mechanism. In the absence of DMSO, the dimer behaves hydrodynamically as a single ideal species, as determined by equilibrium analytical ultracentrifugation, and thermally unfolds according to a two-state dissociative mechanism, based on analysis by differential scanning calorimetry (DSC). In the presence of 2.5% (v/v) DMSO, an equilibrium between the dimer and monomer is now detectable with a measured dimer association constant, K(a), equal to 5.6 x 10(6)/M. DSC curve analysis is consistent with this finding. The data are best fit to a three-state sequential unfolding mechanism, most likely representing folded dimer <==> folded monomer <==> unfolded monomer. The unusually large change in the relative stabilities of dimer and monomer, e.g., the association equilibrium shifts from an infinitely large K(a) down to approximately 10(6)/M, in the presence of relatively low cosolvent concentration is surprising in view of the significant buried surface area at the dimer interface, roughly 20% of the surface area of each monomer is buried. A hypothetical structural mechanism to explain this effect is presented.

Publication types

  • Research Support, U.S. Gov't, Non-P.H.S.
  • Research Support, U.S. Gov't, P.H.S.

MeSH terms

  • Algorithms
  • Amide Synthases / chemistry*
  • Bacillus subtilis / enzymology*
  • Bacterial Proteins / chemistry
  • Calorimetry, Differential Scanning
  • Dimethyl Sulfoxide / chemistry*
  • Dimethyl Sulfoxide / pharmacology
  • Enzyme Stability / drug effects
  • Models, Chemical
  • Models, Molecular
  • Protein Conformation / drug effects
  • Protein Denaturation / drug effects
  • Protein Folding*
  • Protein Renaturation
  • Protein Structure, Quaternary / drug effects
  • Protein Subunits / chemistry
  • Recombinant Proteins / chemistry
  • Thermodynamics
  • Ultracentrifugation

Substances

  • Bacterial Proteins
  • Protein Subunits
  • Recombinant Proteins
  • Amide Synthases
  • NAD+ synthase
  • Dimethyl Sulfoxide